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Abstract. This paper proposes a highly efficient AES hardware archi-
tecture that supports both encryption and decryption for the CBC mode.
Some conventional AES architectures employ pipelining techniques to en-
hance the throughput and efficiency. However, such pipelined architec-
tures are frequently unfit because many practical cryptographic applica-
tions work in the CBC mode, where block-wise parallelism is not avail-
able for encryption. In this paper, we present an efficient AES encryp-
tion/decryption hardware design suitable for such block-chaining modes.
In particular, new operation-reordering and register-retiming techniques
allow us to unify the inversion circuits for encryption and decryption
(i.e., SubBytes and InvSubBytes) without any delay overhead. A new
unification technique for linear mappings further reduces both the area
and critical delay in total. Our design employs a common loop architec-
ture and can therefore efficiently perform even in the CBC mode. We
also present a shared key scheduling datapath that can work on-the-fly
in the proposed architecture. To the best of our knowledge, the proposed
architecture has the shortest critical path delay and is the most effi-
cient in terms of throughput per area among conventional AES encryp-
tion/decryption architectures with tower-field S-boxes. We evaluate the
performance of the proposed and some conventional datapaths by logic
synthesis results with the TSMC 65-nm standard-cell library and Nan-
Gate 45- and 15-nm open-cell libraries. As a result, we confirm that our
proposed architecture achieves approximately 53–72% higher efficiency
(i.e., a higher bps/GE) than any other conventional counterpart.

Keywords: AES, hardware architectures, unified encryption/decryption
architecture, CBC mode

1 Introduction

Cryptographic applications have been essential for many systems with secure
communications, authentication, and digital signatures. In accordance with the



rapid increase in Internet of Things (IoT) applications, many cryptographic algo-
rithms are required to be implemented in resource-constrained devices and em-
bedded systems with a high throughput and efficiency. Since 2001, many hard-
ware implementations for AES have been proposed and evaluated for CMOS
logic technologies. Studies of AES design are important from both practical
and academic perspectives since AES employs an SPN structure and the ma-
jor components (i.e., an 8-bit S-box and permutation used in ShiftRows and
MixColumns) followed by many other security primitives.

AES encryption and decryption are commonly used in block-chaining modes
such as CBC, CMAC, and CCM (e.g., for SSL/TLS, IEEE802.11 wireless LAN,
and IEEE802.15.4 wireless sensor networks). Therefore, AES architectures that
efficiently perform both encryption and decryption in the above block-chaining
modes are highly demanded. However, many conventional architectures employ
pipelining techniques to enhance the throughput and efficiency [13, 15, 17], al-
though such block-wise parallelism is not available in the above block-chaining
modes. For example, the highest throughput of 53 Gbps was achieved in the
previous best encryption/decryption architecture [17], but it only worked in the
ECB mode. In addition, these previous studies assumed offline key schedul-
ing owing to the difficulty of on-the-fly scheduling. On-the-fly key scheduling
should be implemented in most resource-constrained devices because an offline
key scheduling implementation requires additional memory to store expanded
round keys. Thus, it is valuable to investigate an efficient AES architecture with
on-the-fly key scheduling without any pipelining technique.

In this paper, we present a new round-based AES architecture for both en-
cryption and decryption with on-the-fly key scheduling, which achieves the lowest
critical path delay (the least number of serially connected gates in the critical
path) with less area overhead compared to conventional architectures with tower-
field S-boxes. Our architecture employs new operation-reordering and register-
retiming techniques to unify the inversion circuits for encryption and decryption
without any selectors. In addition, these techniques make it possible to unify the
affine transformation and linear mappings (i.e., the isomorphism and constant
multiplications) to reduce the total number of logic gates. The proposed and con-
ventional AES encryption/decryption datapaths are synthesized and evaluated
with the TSMC standard-cell and NanGate open-cell libraries. The evaluation
results show that our architecture can perform both (CBC-) encryption and de-
cryption more efficiently. For example, the throughput per gate of the proposed
architecture in the NanGate 15-nm process is 72% larger than that of the best
conventional architecture.

The rest of this paper is organized as follows: Section 2 introduces related
works on AES hardware architectures, especially those with round-based encryp-
tion and decryption. Section 3 presents a new AES hardware architecture based
on our operation-reordering, register-retiming, and affine-transformation unifica-
tion techniques. Section 4 evaluates the proposed datapath by the logic synthesis
compared with conventional round-based datapaths. Section 5 discusses varia-
tions of the proposed architecture. Finally, Section 6 contains our conclusion.
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Fig. 1. Conventional parallel datapath in
[15].

K9

Kr

K10

Kr

K0

K10

(a) (b)

Fig. 2. Register-retiming techniques in
[15]: (a) original and (b) resulting decryp-
tion flows.

2 Related works

2.1 Unified AES datapath for encryption and decryption

Architectures that perform one round of encryption or decryption per clock cycle
without pipelining are the most typical for AES design and are called round-
based architectures in this paper. Round-based architectures can be implemented
more efficiently in terms of throughput per area than other architectures by
utilizing the inherent parallelism of symmetric key ciphers. For example, the
byte-serial architecture [16,18] is intended for the most compact and low-power
implementations such as in RFID but is not intended for the high throughput
and efficiency. In contrast, round-based architectures are suitable for a high
throughput per gate, which leads to a low-energy implementation [29].

To design such round-based encryption/decryption architectures in an ef-
ficient manner, we consider how to unify the resource-consuming components
such as the inversion circuits in SubBytes/InvSubBytes for the encryption and
decryption datapaths. There are two conventional approaches for designing such
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Fig. 4. Reordering technique in [29]: de-
cryption flows (a) before and (b) after re-
ordering.

unified datapaths. The first approach is to place two distinct datapaths for en-
cryption and decryption and select one of the datapaths with multiplexers as
in [15]. Figure 1 shows an overview of the datapath flow in [15], where the inver-
sion circuit is shared by both paths, and additional multiplexers are used at the
input and output of the encryption and decryption paths. In [15], a reordered
decryption operation was introduced as shown in Fig. 2. The intermediate value
is stored in a register after InvMixColumns instead of AddRoundKey. Such reg-
ister retiming was suitable for pipelined architectures. The main drawbacks of
such approaches are the false critical path delay and the required area and delay
overheads caused by three multiplexers. The critical path of the datapath in
Fig. 1 is denoted in bold, which would never be active because it passes from
the decryption path to the encryption path. This false critical path reduces the
maximum operation frequency owing to logic synthesis due to the false longest
logic chain. The overhead caused by the multiplexers is also nonnegligible for
common standard-cell-based designs.

The second approach is to unify the circuits of the functions SubBytes,
ShiftRows, and MixColumns with their inverse functions, respectively. Figure
3 shows the datapath in [29] where encryption and decryption paths are com-
bined using the second approach, where the reordering technique is given in
Fig. 4. The order of the decryption operations is changed to be the same as
that of the encryption operations. Note that the order of (Inv)SubBytes and
(Inv)ShiftRows can be changed without any overhead, and the datapath in [29]
changes the order of SubBytes and ShiftRows in the encryption. The reordering
of AddRoundKey and InvMixColumns utilizes the linearity of InvMixColumns
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as follows: MC−1(Mr +Kr) = MC−1(Mr) +MC−1(Kr), where MC−1 is the
function InvMixColumns, and Mr and Kr are the intermediate value after In-
vShiftRows and the round key at the r-th round, respectively. Here, InvMix-
Columns requires the round keys, whereas MixColumns and InvMixColumns
can be unified to reduce the area. Therefore, this type of architecture requires
an additional InvMixColumns to compute MC−1(Kr) for decryption. In addi-
tion, the false path and multiplexer overhead exist because each function and its
inverse function are implemented in a partially serial manner with multiplexers
like SubBytes and InvSubBytes in Fig. 1, where the critical path consists of
Affine, Inversion, InvAffine, and an additional multiplexer.

The architecture in [17] employs a reordering technique similar to [29]. The
major difference is the intermediate value stored in the register. The architec-
ture in [14] also employs the same approach that combines the encryption and
decryption datapaths, but does not change the order of AddRoundKey and In-
vMixColumns to remove InvMixColumns to compute MC−1(Kr). As a result,
an additional selector is required to unify MixColumns and InvMixColumns.

As described above, sharing inversion circuits is essential for designing ef-
ficient AES hardware. Although a hardware T-box architecture such as that
in [20] is also useful for a high-throughput implementation, it is not applicable
to the above shared datapath owing to the lack of sharable components between
the encryption and decryption paths.

2.2 Inversion circuit design and tower-field arithmetic

The design of the inversion circuit used in (Inv)SubBytes has a significant impact
on the performance of AES implementations. Many inversion circuit designs have
been proposed. There are two major approaches using direct mapping and tower-
field arithmetic. Inversion circuits based on direct mapping such as table-lookup,
Binary Decision Diagram (BDD), and Positive-Polarity Reed-Muller (PPRM)
[15, 19, 20] are faster but larger than those based on a tower field. On the other
hand, tower-field arithmetic enable us to design more compact and more area-
time efficient inversion circuits in comparison with direct mapping. Therefore,
we focus on inversion circuits based on tower-field arithmetic in this paper.

The performance of tower-field-based inversion circuits varies with the field
towering and Galois field (GF) representation. After the introduction of tower-
field inversion over GF (((22)2)2) based on a polynomial basis (PB) by Satoh
et al. [29], Canright reduced the gate count using a normal basis-(NB-)based
GF (((22)2)2), which has been known as the smallest for a long time [7], Nogami
et al. showed that a mixture of a PB and an NB was useful for a more effi-
cient design [23]. On the other hand, Rudra et al., Joen et al., and Mathew et
al. designed inversion circuits using PB-based GF ((24)2), which have a smaller
critical path delay than those based on GF (((22)2)2) [12, 17, 27]. Nekado et al.
showed that a redundantly represented basis (RRB) was useful for an efficient
design [21]. Recently, Ueno et al. designed an inversion circuit based on the com-
bination of an NB, an RRB, and a polynomial ring representation (PRR), which
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Fig. 5. Overall architecture of proposed AES hardware.

is known as the most area-time efficient inversion [31]. In addition, a logic min-
imization technique was applied to Canright’s S-box, which resulted in a more
compact S-box [6].

To embed such a tower-field-based inversion circuit in AES hardware, an
isomorphic mapping between the AES field and the tower field is required be-
cause the inversion and MixColumns are performed over the AES field (i.e.,
PB-based GF (28) with an irreducible polynomial x8 + x4 + x3 + x + 1). Typi-
cally, the input into the inversion circuit (in the AES field) is initially mapped
to the tower field by the isomorphic mapping. After the inversion operation
over the tower field, an inverse isomorphic mapping (and affine transformation)
are applied [29]. On the other hand, some architectures perform all of the AES
subfunctions (i.e., SubBytes as well as ShiftRows, MixColumns, and AddRound-
Key) over the tower field, where isomorphic mapping and its inverse mappings
are performed at the timings of the data (i.e., plaintext and ciphertext) input
and output, respectively [10, 16–18,27]. In other words, the cost of field conver-
sion is suppressed when the conversion is performed only once during encryption
or decryption. However, the cost of constant multiplications in MixColumns over
a tower field is worse than that over the AES field while inversion is efficiently
performed over the tower field. More precisely, in tower-field architectures, such
linear mappings including constant multiplications usually require 3TXOR delay,
where TXOR indicates the delay of an XOR gate [21]. The XOR gate count used
in (Inv)MixColumns over a tower field is also worse than that over AES field.
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3 Proposed architecture

This section presents a new round-based AES architecture that unifies the en-
cryption and decryption paths in an efficient manner. The key ideas for reducing
the critical path delay are summarized as follows: (1) to merge linear mappings
such as MixColumns and isomorphic mappings as much as possible by reordering
subfunctions, (2) to minimize the number of selectors to unify the encryption
and decryption paths by the above merging and a register retiming, and (3) to
perform isomorphic mapping and its inverse mappings only once in the pre- and
post-round datapaths. We can reduce the number of linear mappings to at most
one for each round operation as the effect of (1). Moreover, we can reduce the
number of selectors to only one (4-to-1 multiplexer) in the unified datapath as the
effect of (2) while the inversion circuit is shared by the encryption and decryp-
tion paths. From the idea of (3), we can remove the isomorphic mapping and its
inverse mappings from the critical path. Figure 5 shows the overall architecture
that consists of the round function and key scheduling parts. Our architecture
performs all of the subfunctions over a tower field for both the round function
and key scheduling parts and therefore applies isomorphic mappings between the
AES and tower fields in the datapaths of the pre- and post-round operations,
which are represented as the blocks “Pre-round datapath” and “Post-round dat-
apath” in Fig. 5. “Round datapath” performs one round operation for either
encryption or decryption.

3.1 Round function part

The proposed architecture employs a unified datapath for encryption and de-
cryption as in [15] and applies new operation-reordering and register-retiming
techniques to address the conventional issues of a false critical path and addi-
tional multiplexers. Using our operation-reordering technique and then merging
linear mappings, we can reduce the number of linear mappings on the critical
path of the round datapath to at most one. Our reordering technique also allows
to unify the linear mappings and affine transformation in a round. The unifi-
cation of these mappings can drastically reduce the critical path delay and the
XOR-gate count of linear mappings, even in a tower-field architecture.

The new operation reordering is derived as follows. First, the original round
operation of AES encryption is represented by the following equation:

m
(r+1)
i,j = u−iS(m

(r)
0,i+j) + u1−iS(m

(r)
1,i+j) + u2−iS(m

(r)
2,i+j) + u3−iS(m

(r)
3,i+j) + k

(r)
i,j

=

3∑
e=0

(ue−iS(m
(r)
e,i+j)) + k

(r)
i,j , (1)

where m
(r)
i,j and k

(r)
i,j are the i-th row and j-th column intermediate value and

round key at the r-th round, except for the final round. Note that the subscripts
of each variable are a member of Z/4Z. The function S indicates the 8-bit S-
box, and u0, u1, u2, and u3 are the coefficients of the matrix of MixColumns and
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respectively given by β, β + 1, 1, and 1, where β is the indeterminate of GF (28)
satisfying β8 + β4 + β3 + β + 1 = 0. We can rewrite Eq. (1) by decomposing S
into inversion and affine transformation as follows:

m
(r+1)
i,j =

3∑
e=0

(ue−i(A(
(
m

(r)
e,i+j

)−1

) + c)) + k
(r)
i,j , (2)

where A is the linear mapping of the affine transformation, and c (= β6 + β5 +
β+1) is a constant. In the case of tower-field architectures, Eq. (2) is represented
by

m
(r+1)
i,j =

3∑
e=0

(ue−i(A(Δ
′(
(
Δ(m

(r)
e,i+j)

)−1

)) + c)) + k
(r)
i,j , (3)

where Δ is the isomorphic mapping from the AES field to a tower field, and Δ′

is the inverse isomorphic mapping.
The linear mappings, which include an isomorphism and constant multipli-

cations over the GF, are performed by the constant multiplication of the corre-
sponding matrix over GF (2). Therefore, we can merge such mappings to reduce
the critical path delay and the number of XOR gates. In addition, we consider

the variable d
(r)
i,j of the tower field derived from m

(r)
i,j . Substituting m

(r)
i,j with

Δ′(d(r)i,j ) (= m
(r)
i,j ), we can merge the linear mappings as follows:

d
(r+1)
i,j =

3∑
e=0

(Ue−i(
(
d
(r)
e,i+j

)−1

)) +Δ(c) +Δ(k
(r)
i,j ), (4)

where Ue(x) = Δ(ue(A(Δ
′(x)))). Note that an arbitrary linear mapping L satis-

fies L(a+ b) = L(a) +L(b). Thus, the linear mappings of a round in Eq. (4) can
be merged into at most one, even with a tower-field S-box, whereas the linear
mappings in Eq. (3) cannot be.

On the other hand, the corresponding equation for AES decryption with
tower-field arithmetic is given by

d
(r−1)
i,j =

3∑
e=0

(Δ(ve−i(Δ
′(
(
Δ(A′(Δ′(d(r)e,j−i))) +Δ(c′)

)−1

+Δ(k
(r)
e,j−i))))), (5)

where A′ indicates the linear mapping of the inverse affine transformation. The
coefficients v0, v1, v2, and v3 are respectively given by β3+β2+β, β3+β+1, β3+
β2+1, and β3+1, and c′ (= β2+1) is a constant. Here, the linear mappings cannot
be merged into one because they are performed both before and after the inver-
sion operation. In addition, if we construct an encryption/decryption datapath
based on Eqs. (4) and (5), the inversion circuit cannot be shared by encryption
and decryption without a selector because the timings of the inversion opera-
tions are different from each other. Therefore, we consider a register retiming

to store the intermediate value s
(r)
i,j given after the inverse affine transformation

over the tower-field. Here, s
(r)
i,j is given by s

(r)
i,j = Δ(A′(Δ′(d(r)i,j ))) + Δ(c′). In
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Fig. 6. Proposed (i) encryption and (ii) decryption flows (a) before and (b) after re-
ordering and register-retiming.

the decryption, we store s
(r)
i,j in the data register instead of d

(r)
i,j . Using s

(r)
i,j and

s
(r−1)
i,j , we rewrite Eq. (5) as follows:

s
(r−1)
i,j =

3∑
e=0

(Ve−i(
(
s
(r)
e,j−i

)−1

+Δ(k
(r)
e,j−i))) +Δ(c′), (6)

where Ve(x) = Δ(A′(ve(Δ′(x)))).
Our round datapath is constructed with a minimal critical path delay ac-

cording to Eqs. (4) and (6). Here, we further reorder the sequence of operations
(i.e., subfunctions) to share inversion circuits without additional selectors and
to unify the linear mappings. Figure 6 shows the proposed reordering technique.
We first decompose SubBytes into the inversion and (Inv)Affine. In the encryp-
tion, Affine, MixColumns, and AddRoundKey can be merged by exchanging
Affine and ShiftRows. In the decryption, the inversion circuit is located at the
beginning of the round by exchanging the inversion and InvShiftRows. Thus,
additional selectors for sharing the inversion circuit are not required thanks to
the operation-reordering and register-retiming techniques. This is because both
inversion operations are performed at the beginning of the round, which means
that the data register output can be directly connected to the inversion circuit.

Figure 7 illustrates the proposed round function datapath with the unification
of linear mappings. Our architecture employs only one 128-bit 4-in-1 multiplexer,
whereas conventional ones employ several 128-bit multiplexers. For example, the
datapath in [14] employs seven 128-bit multiplexers1. Fewer selectors can reduce

1 The selectors in SubBytes/InvSubBytes are included in the seven multiplexers.
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Fig. 7. Proposed round function part.

the critical path delay and circuit area and solve the false critical path problem.
Unified affine and Unified affine−1 in Fig. 7 perform the unified linear mappings
(i.e., U0, . . . , U3 and V0, . . . , V3) and constant addition. The number of linear
mappings on the critical path is at most one in our architecture, whereas that
of the conventional architectures is not. We can also suppress the overhead of
constant multiplication over the tower field by the unification. Adder arrays in
Fig. 7 consist of four 4-input 8-bit adders in MixColumns or InvMixColumns. In
the encryption, the factoring technique for MixColumns and AddRoundKey [21]
is available for Unified affine, which makes the circuit area smaller without a
delay overhead. As a result, the data width between Unified affine and Adder
array in Encryption path is reduced from 512 to 256 bits because the calculations
of U1 and U3 are not performed in Encryption path. In addition, Adder array
and AddRoundKey are unified in Encryption path because both of them are
composed of 8-bit adders2. On the other hand, since there is no factoring tech-
nique for InvMixColumns without delay overheads, the data width from Unified
affine−1 to Adder array in Decryption path is 512 bits. Finally, an inactive path
can be disabled using a demultiplexer since our datapath is fully parallel after
the inversion circuit. Thanks to the disabling, a multiplexer and AddRoundKey
are unified as Bit-parallel XOR. (The addition of Δ(c) in Unified affine should

2 Some architectures such as [14,29] unify AddInitialKey and AddRoundKeys. We did
not unify them to avoid increasing the number of selectors.
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be active only when encryption.) In addition, the demultiplexer would suppress
power consumption due to a dynamic hazard. Although tower-field inversion cir-
cuits are known to be power-consuming owing to dynamic hazards [19], these
hazards can be terminated at the input of the inactive path.

Our datapath employs the inversion circuit presented in [31] because it has
the highest area-time efficiency among inversion circuits including one using a
logic minimization technique [6]. We can merge the isomorphic mappings in or-
der to reduce the linear function on the round datapath to only one, even if
the inversion circuit has different GF representations at the input and output.
Since the output is given by an RRB, the data width from Inversion to Uni-
fied affine (or Unified affine−1) is given by 160 bits. However, AddRoundKey
in the decryption path and Bit-parallel XOR in the post-round datapath are
implemented respectively by only 128 XOR gates because the NB used as the
input is equal to the reduced version of the RRB. In addition, a 1:2 DeMUX is
implemented with NOR gates thanks to the redundancy, whereas nonredundant
representations require AND gates.

3.2 Key scheduling part

The on-the-fly key scheduling part is shared by the encryption and decryption
processes. For the encryption, the key scheduling part first stores the initial key
in the initial key register (in Fig. 5) and then generates the round keys during
the following clock cycles. For the decryption, the final round key should be
calculated from the initial key and stored in the initial key register in advance.
The key scheduling part then generates the round keys in the reverse order
by the round key generator (in Fig. 5). However, conventional key scheduling
datapaths such those as in [14, 29] are not applicable to our round datapath
because they have a loop with a false path and/or a longer true critical path
than our datapath.

To address the above issue, we introduce a new architecture for the key
scheduling datapath. For on-the-fly implementation, the subkeys are calculated
for each of the four subkeys (i.e., 128 bits) in a clock cycle. Therefore, the on-
the-fly key scheduling for the encryption is expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k
(r+1)
0 = k

(r)
0 +KeyEx(k

(r)
3 )

k
(r+1)
1 = k

(r)
0 + k

(r)
1 +KeyEx(k

(r)
3 )

k
(r+1)
2 = k

(r)
0 + k

(r)
1 + k

(r)
2 +KeyEx(k

(r)
3 )

k
(r+1)
3 = k

(r)
0 + k

(r)
1 + k

(r)
2 + k

(r)
3 +KeyEx(k

(r)
3 )

, (7)

where k
(r)
0 , k

(r)
1 , k

(r)
2 , and k

(r)
3 are a 32-bit subkey at the r-th round andKeyEx is

the key expansion function that consists of a round constant addition, RotWord,
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Fig. 8. Proposed key scheduling part.

and SubWord. The inverse key scheduling for the decryption is represented by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k
(r−1)
0 = k

(r)
0 +KeyEx(k

(r)
2 + k

(r)
3 )

k
(r−1)
1 = k

(r)
0 + k

(r)
1

k
(r−1)
2 = k

(r)
1 + k

(r)
2

k
(r−1)
3 = k

(r)
2 + k

(r)
3

. (8)

Figure 8 shows the proposed key scheduling datapath architecture, where the
KeyEx components are unified for encryption and decryption. Note here that

most of adders (i.e., XOR gates) for computing k
(r+1)
1 , k

(r+1)
2 , and k

(r+1)
3 should

be nonintegrated to make the critical path shorter than that of the round func-
tion part. The input key is initially mapped to the tower field, and all of the
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Table 1. Synthesis results for proposed and conventional AES hardware architectures
with area optimization

Area Latency Max. freq. Throughput Efficiency
(GE) (ns) (MHz) (Gbps) (Kbps/GE)

TSMC 65-nm

Satoh et al. [29] 13,671.75 78.10 140.85 1.64 119.88

Lutz et al. [15] 20,380.50 68.50 145.99 1.87 91.69

Liu et al. [14] 12,538.75 85.25 129.03 1.50 119.75

Mathew et al. [17] 20,639.50 97.68 112.61 1.31 63.49

This work 15,242.75 46.97 234.19 2.73 178.78

NanGate 45-nm

Satoh et al. [29] 12,560.99 31.57 348.43 4.05 322.78

Lutz et al. [15] 20,000.66 20.30 492.61 6.31 315.26

Liu et al. [14] 11,829.34 34.43 319.49 3.72 314.28

Mathew et al. [17] 17,573.33 41.80 263.16 3.06 174.25

This work 13,814.69 16.94 649.35 7.56 546.96

NanGate 15-nm

Satoh et al. [29] 14,526.01 4.36 2,524.17 29.37 2,022.04

Lutz et al. [15] 23,391.49 4.57 2,185.84 25.44 1,087.37

Liu et al. [14] 13,847.25 4.74 2,321.05 27.01 1,950.46

Mathew et al. [17] 21,361.00 5.32 2,066.93 24.05 1,125.95

This work 15,468.97 2.65 4,144.22 48.22 3,117.44

computations (including AddRoundKey) are performed over the tower field. The
ENC/DEC signal controls the input to RotWord and SubWord using a 32-bit
AND gate. The upper 2-in-1 multiplexer selects an initial key or a final round
key as the input to Initial key register, the middle 2-in-1 multiplexer selects a
key stored in Initial key register or a round key as the input to Round key gener-
ator, and the lower 2-in-1 multiplexers select encryption or decryption path. The
round constant addition is performed separately from RotWord and SubWord
to reduce the critical path delay. As a result, the critical path delay of the key
scheduling part becomes shorter than that of the round function part.

4 Performance evaluation

Tables 1 and 2 summarize the synthesis results of the proposed AES encryp-
tion/decryption architecture by Synopsys Design Compiler (Version D2010-3)
with the TSMC 65-nm and NanGate 45- and 15-nm standard-cell libraries [2,3]
under the worst-case conditions, where Area indicates the circuit area estimated
on the basis of a two-way NAND equivalent gate size (i.e., gate equivalents
(GEs)); Latency indicates the latency for encryption, which is estimated by the
circuit path delay of the datapath under the worst low condition; Max. freq. in-
dicates the maximum operation frequency obtained from the critical path delay;
Throughput indicates the throughput at the maximum operation frequency; and
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Table 2. Synthesis results for proposed and conventional AES hardware architectures
with area-speed optimization

Area Latency Max. freq. Throughput Efficiency
(GE) (ns) (MHz) (Gbps) (Kbps/GE)

TSMC 65-nm

Satoh et al. [29] 14,516.50 56.87 193.42 2.25 155.05

Lutz et al. [15] 22,883.25 33.90 294.99 3.78 165.00

Liu et al. [14] 13,970.50 60.17 182.82 2.13 152.27

Mathew et al. [17] 23,298.49 65.45 168.07 1.96 83.94

This work 15,807.00 34.10 322.58 3.75 237.47

NanGate 45-nm

Satoh et al. [29] 13,386.67 24.42 450.45 5.24 391.55

Lutz et al. [15] 22,417.01 14.40 694.44 8.89 396.52

Liu et al. [14] 12,443.66 28.27 389.11 4.53 363.86

Mathew et al. [17] 19,243.67 31.90 344.83 4.01 208.51

This work 14,582.99 13.53 813.01 9.46 648.73

NanGate 15-nm

Satoh et al. [29] 16,924.74 3.31 3,322.26 38.66 2,284.17

Lutz et al. [15] 25,692.49 2.08 4,799.85 61.44 2,391.28

Liu et al. [14] 15,768.43 3.65 3,014.14 35.07 2,224.29

Mathew et al. [17] 23,789.48 4.03 2,729.18 31.76 1,334.95

This work 17,232.00 1.80 6,117.70 71.19 4,131.14

Efficiency indicates the throughput per area, which corresponds to the product
of the area and latency in this nonpipelined design3. To perform a practical
performance comparison, an area optimization (which maximizes the effort of
minimizing the number of gates without flattening the description) was applied
in Tab. 1, and an area-speed optimization (where an asymptotical search with a
set of timing constraints was performed after the area optimization) was applied
in Tab. 2.

In these tables, the conventional representative datapaths [14,15,17,29] were
also synthesized using the same optimization conditions. The source codes for
these syntheses were described by the authors referring to [14,15,17,29], except
for the source codes of Satoh’s and Canright’s S-boxes in [7, 29] that can be
obtained from their websites [1, 8]. For a fair comparison, the datapaths of [15]
and [17] were adjusted to the round-based nonpipelined architecture correspond-
ing to the proposed datapath. Note that only the inversion circuit over a PB-

3 Design Compiler generated a static power consumption report for each architecture.
However, the report dose not consider the effect of glitches while tower-field inversion
circuits are known to include non-trivial glitches [19]. Therefore, we did not mention
the power consumption report to avoid misleading.
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based GF ((24)2) in [17] was not described faithfully according to the paper4.
Latency and Throughput were calculated assuming that the datapath of [15]
requires 10 clock cycles to perform each encryption or decryption and the others
require 11 clock cycles. This is because the initial key addition and first-round
computation are performed with one clock cycle for [15]. Area was calculated
without the initial key, round key, and data registers to compare the datapaths
more clearly. Note also that the key scheduling parts of [15] and [17] were im-
plemented with the one presented in this paper because there is no description
for the key scheduling parts. (For [15], the isomorphic mapping from GF (28) to
GF ((24)2) was removed for applying to the round function part.)

The results in Tab. 1 show that our datapath achieves the lowest latency
(i.e., highest throughput) compared with the conventional ones with tower-field
inversion circuits owing to the lower critical path delay. Moreover, the circuit area
is not the largest owing to fewer selectors. Note that the latency is consistent with
the throughput because these circuits are not pipelined. Although all operations
are translated to the tower field in our architecture, the area and delay overheads
of MixColumns and InvMixColumns are suppressed by the unification technique.
In addition, even with a tower-field S-box, our architecture has an advantage
with regard to the latency over Lutz’s one with table-lookup-based inversion, as
indicated in Tab. 2. As a result, our architecture is more efficient in terms of
the throughput per area than any conventional architecture. More precisely, the
proposed datapath is approximately 53–72%more efficient than any conventional
architecture under the conditions of the three CMOS processes. The results also
suggest that the proposed architecture would perform an AES encryption or
decryption with the smallest energy. Moreover, the cutoff of an inactive path
by a demultiplexer would further reduce the power consumption caused by a
dynamic hazard, but this could not be evaluated by the logic synthesis and still
remains for the future study.

The performance of the architecture in [17] was relatively lower for our exper-
imental conditions because its critical path includes InvMixColumns to compute
MC−1(Kr) and therefore becomes longer than those of other designs. In addi-
tion, InvMixColumns over a tower-field is more area-consuming than that over
an AES field. This suggests that the architecture in [17] is not suitable for an on-
the-fly key scheduling implementation. The architectures in [14,29] have smaller
areas than the proposed architecture; however, our architecture has a higher
throughput. The increasing ratio of the throughput is larger than that of the
circuit area because the architectures in [29] and [14] use InvMixColumns to
compute MC−1(Kr) and require several additional selectors, respectively.

4 According to [17], the GF (24) inversion in the circuit can be implemented with a
TXOR + 3TNAND delay, where TXOR and TNAND are the delays of the XOR and
NAND gates, respectively. However, there is no detailed description to realize such
a circuit. Therefore, using the best of our knowledge, we described the circuit by a
direct mapping based on the PPRM expansion, which is an algebraic normal form
frequently used for designing GF arithmetic circuits [19,28].
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The above comparative evaluation was done with the proposed and some
conventional but representative datapaths. There are other previous works fo-
cusing on efficiency (i.e., throughput per gate) by round-based architectures.
However, such previous works do not provide a concrete implementation and/or
exhibit better performance than the abovementioned conventional datapaths.
For example, a hardware AES implementation with a short critical path was
presented in [21], which employed an RRB to reduce the critical path delay of
SubBytes/InvSubBytes and MixColumns/InvMixColumns. However, we could
not evaluate the efficiency by ourselves because of the lack of a detailed descrip-
tion. Another AES encryption/decryption architecture with a high throughput
was presented in [14]. However, the architecture had a lower throughput/area
efficiency compared to the architecture in [29] according to that paper. More-
over, AES architectures that support either encryption or decryption such as
in [20, 32] are not evaluated in this paper.

5 Discussion

The proposed design employs a round-based architecture without block-wise
parallelism such as pipelining. The modes of operations with block-wise paral-
lelism (e.g., the ECB and CTR modes) are also available owing to the trade-off
between the area and the throughput by pipelining [11]. A simple way to ob-
tain a pipelined version of the proposed architecture is to unroll the rounds and
insert pipeline registers between them. The datapath can be further pipelined
by inserting registers into the round datapath. The proposed datapath can be
efficiently pipelined by placing the pipeline register at the output of the inversion
with a good delay balance between the inversion and the following circuit. For
example, the synthesis results for the proposed datapath using the area-speed
optimization with the NanGate 45-nm standard-cell library indicated that the
inversion circuit had a delay of 0.63 ns, and the remainder had a delay of 0.67 ns.
As a result, pipelining would achieve a throughput of 17.37 Gbps, which is nearly
twice that without pipelining. Thus, the proposed datapath is also suitable for
such a pipelined implementation.

Another discussion point is how the proposed architecture can be resistant
to side-channel attacks. A masking countermeasure would be based on a masked
tower-field inversion circuit [9, 25] such as that in [24]. The major features of
the countermeasure are to replace the inversion with a masked inversion and to
duplicate other linear operations. Such a countermeasure can also be applied to
the proposed datapath. In addition, hiding countermeasures, such asWDDL [30],
which replaces the logic gates with a complementary logic style, would also
be applicable, and the hardware efficiency would be proportionally lower with
respect to the results in Tabs. 1 and 2.

More sophisticated countermeasures such as threshold implementation (TI)
and generalized masking schemes (GMSs) [4,5,18,22,26] would also be applicable
to the proposed datapath in principle in the same manner as other conventional
ones. On the other hand, such countermeasures, especially against higher-order
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DPAs, require a considerable area overhead and more random bits compared with
the aforementioned countermeasures. When applying such countermeasures, the
area overhead would be critical for some applications. In addition, TI- and GMS-
based inversion circuits should be pipelined to reduce the resulting circuit area
(i.e., the number of shares). To divide the circuit delay equally, it would be better
to insert pipeline register at the middle of Encryption and Decryption path in
Fig. 7.

6 Conclusion

This paper presented a new efficient round-based AES architecture that supports
both encryption and decryption. An efficient AES datapath with a lower latency
(or higher throughput per gate) is suitable for some practical modes of operation,
such as CBC and CCM, because pipelined parallelism cannot be applied to such
modes. The proposed datapath utilizes new operation-reordering and register-
retiming techniques to unify critical components (i.e., inversion and linear matrix
operations) with fewer additional selectors. As a result, our datapath has the
lowest critical path delay compared to conventional ones with tower-field S-
boxes. The proposed and conventional AES hardware were designed on the basis
of compatible round-based architectures and evaluated using logic synthesis with
TSMC 65-nm and NanGate 45- and 15-nm CMOS standard-cell libraries under
the worst-case conditions. The synthesis results suggested that the proposed
architecture was approximately 53–72%more efficient than the best conventional
architecture in terms of the throughput per area, which would also indicate that
the proposed architecture can perform encryption/decryption with the lowest
energy.

The performance evaluation was performed at the design stage of the logic
synthesis; therefore, the power consumption and latency considering place and
route were not evaluated. A detailed evaluation after the place and route is
planned as future work. However, the post-synthesis results would be propor-
tional to the presented synthesis results because the proposed and conventional
architectures employ the same or similar hardware algorithms (e.g., tower-field
inversion) and do not have any extra global wires that have an impact on the
critical path. The design of efficient and side-channel-resistant AES hardware
based on the proposed datapath is also planned for future work.
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Appendix: An example set of linear mappings and a
unified affine

This appendix provides an example set of matrices for linear operations, i.e.,
an isomorphic mapping, an inverse isomorphic mapping, an affine transforma-
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tion over the tower field, inverse affine transformation over the tower field,
U0, U1, U2, U3, V0, V1, V2, and V3. In this study, we employ the tower-field in-
version circuit in [31]. In the following formulae, the least-significant bits are in
the upper-left corner.

The conversion matrices of the isomorphic mapping and its inverse mapping
(denoted by δ and δ′, respectively) are given by

δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 1 0 0
1 0 1 0 0 0 1 1
1 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0
1 1 1 0 0 0 0 1
0 0 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, δ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 0 0 1 1 0
0 1 0 1 0 0 1 0 1 0
0 1 0 0 1 1 0 1 1 1
1 0 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 1 0 1
1 0 0 0 1 0 0 0 0 0
1 1 1 1 0 1 1 0 0 0
1 1 0 0 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The isomorphic mapping using δ performs conversion from the AES field to the
tower field used in [31] (i.e., an NB-based GF ((24)2)). The inverse isomorphic
mapping using δ′ performs conversion from the RRB-based GF ((24)2) to the
AES field. The affine and inverse affine matrices over the tower field (denoted
by φ and φ′, respectively) are given by

φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0 0 1 1 0
1 0 0 0 1 0 0 1 1 0
1 1 0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 1 1 1
1 0 0 1 0 1 0 0 0 1
1 1 0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 1 1 0
1 1 0 1 1 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, φ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 1 1 0
1 1 0 1 0 1 1 0
0 1 0 1 1 0 0 0
0 0 1 1 1 0 1 1
0 0 1 0 0 0 0 1
0 1 0 1 0 1 0 1
0 0 1 0 1 1 1 0
0 1 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The input and output of the linear mapping represented by φ are given by the
RRB- and NB-based GF ((24)2), respectively. The input and output of the linear
mapping represented by φ′ are given by the NB-based GF ((24)2). The constants
Δ(c) and Δ(c′) are given by β5 + β3 + β2 and β7 + β4 + β2, respectively. Let ψe

and ψ′
e be the matrices representing Ue and Ve, respectively (0 ≤ e ≤ 3). The

matrices ψ0, ψ1, ψ2, and ψ3 are given by

ψ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 1 1 1 1
0 0 1 1 0 1 0 1 0 0
1 1 0 1 1 0 1 1 1 1
1 1 0 1 1 1 0 0 0 1
1 0 0 1 0 0 0 0 1 1
1 0 1 1 1 0 0 0 0 0
1 1 1 0 1 0 1 0 1 0
0 1 0 0 1 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ψ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 1 0 0 1
1 0 1 1 1 1 0 0 1 0
0 0 0 0 0 1 1 0 1 1
0 1 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 1
0 1 1 1 1 1 0 1 0 0
1 0 0 1 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

ψ2 = ψ3 = φ. (12)
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respectively. The matrices ψ′
0, ψ

′
1, ψ

′
2, and ψ

′
3 are given by

ψ′
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 1 0 1 1
1 0 0 0 1 1 1 0 1 1
1 1 0 0 0 0 0 1 0 1
0 0 1 0 1 0 0 0 1 1
1 1 0 1 1 0 0 0 1 1
1 1 0 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ψ′
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0 0 1 1
1 1 0 0 0 0 1 0 0 1
0 1 1 1 1 0 1 0 0 1
1 0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 1 1 1 0
0 1 0 0 1 1 1 1 1 0
0 1 0 0 1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

ψ′
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 1 1 1 1 0
0 1 0 1 0 1 1 1 1 0
1 0 0 0 1 1 1 0 1 1
0 1 1 1 1 1 0 1 0 0
1 1 0 0 0 1 0 1 1 1
1 0 0 0 1 1 0 0 0 1
1 1 0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ψ′
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 1 1 1 1
1 0 0 0 1 1 1 1 1 0
0 0 1 0 1 1 0 0 0 1
1 0 0 1 0 1 1 1 0 1
0 0 1 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 1 1 0
0 0 1 1 0 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)
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